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An e$cient and numerically stable eigensolution method for structures with
multiple natural frequencies is presented. The proposed method is developed by
improving the well-known subspace iteration method with shift. A major di$culty
of the subspace iteration method with shift is that because of singularity problem,
a shift close to an eigenvalue cannot be used, resulting in slower convergence. In
this paper, the above singularity problem has been solved by introducing side
conditions without sacri"ce of convergence. The proposed method is always
non-singular even if a shift is on a distinct eigenvalue or multiple ones. This is one
of the signi"cant characteristics of the proposed method. The non-singularity is
proved analytically. The convergence of the proposed method is at least equal to
that of the subspace iteration method with shift, and the operation counts of the
above two methods are almost the same when a large number of eigenpairs are
required. To show the e!ectiveness of the proposed method, two numerical
examples are considered. ( 1999 Academic Press
1. INTRODUCTION

The eigensolution method is very important in a dynamic analysis of structures
when the mode superposition method is used. Many eigensolution methods have
been developed, and among these methods, the subspace iteration method has
hitherto been known to be very e$cient, and so has been widely used.

The subspace iteration method was developed and named by Bathe [1, 2]. This
method combines the simultaneous inverse iteration method and the Rayleigh}Ritz
analysis. The following shortcomings have been identi"ed after extensive use of the
method [3]. These include: (1) slow convergence, large computational and storage
costs when a relatively large number of eigenpairs are required; (2) signi"cant
computational e!ort required to form and solve the subspace eigenproblem when
a large number of eigenpairs are required; and (3) missed eigenvectors caused by
a poor choice of starting trial vectors.

To overcome the above shortcomings, many researchers have studied a variety
of acceleration procedures of the subspace iteration method. The techniques
employed include Chebyshev polynomials [4], over-relaxation method [5, 6],
0022-460X/99/420271#21 $30.00/0 ( 1999 Academic Press
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shifting technique [7], exploitation by partitioning a large structure into a number
of substructures [8], improving the selection initial vectors [9], selective repeated
inverse iteration and multiple inverse iteration [10, 11], and subspace iteration by
omitting some of the Rayleigh}Ritz procedure from certain iteration steps [12, 13].

Among the above accelerated techniques, a shifting technique is well known and
e!ectively used in the commercial FEM programs such as ADINA [14]. However,
since the singularity may occur during the use of the shifting technique in the
accelerated scheme such as the subspace iteration method with shift, the shift must
be carefully chosen to avoid the singularity. It is a signi"cant disadvantage of the
subspace iteration method with shift.

Jung et al. [15] have developed a method that always guarantees the numerical
stability and maintains the convergence rate of the subspace iteration method with
shift even if it is an exact eigenvalue itself. However, the method can only be applied
to the structures with distinct natural frequencies. If a structure with multiple
natural frequencies is analyzed by the method, the singularity problem may still
occur.

In this paper, when the eigenvalue analysis for a structure with multiple
eigenvalues is performed, an eigensolution technique that always guarantees the
numerical stability is developed by improving the method of Jung et al. [15]. That
is, the proposed method is always numerically stable even if a shift is on a distinct
eigenvalue or multiple ones.

The subspace iteration method with shift is brie#y reviewed in the next section.
Section 3 includes the theory, the proof of the numerical stability, the convergence
analysis and the operation counts of the proposed method. The e!ectiveness of the
proposed method is veri"ed by the results of numerical examples in Section 4.
Section 5 has concluding remarks.

2. SUBSPACE ITERATION METHOD WITH SHIFT

The eigenproblem of the structural dynamics may be written as follows [16]:

KX"MXK, (1)

where K and M are the sti!ness and mass matrices of the structure of the order n,
respectively, the columns of X the eigenvectors, and K a diagonal matrix with
eigenvalues on its diagonal.

Applying a shift k to equation (1) gives

(K!kM)X"MXX, (2)

where

X"K!kI (3)

and I is the unit matrix.
Suppose that the p smallest eigenvalues j

i
(i"1, 2,2 , p ) and corresponding

eigenvectors x
i
are required. For faster convergence, q trial vectors are normally

used with q"minM2p,p#8N. Then, the algorithm of the subspace iteration
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method with the shift k can be described as follows:

Step 1. Find the eigenvector approximations XM (k`1) by the simultaneous inverse
iteration method:

(K!kM)XM (k`1)"MX(k), (4)

where XM (k`1) and X(k) are the (n]q) matrices.
Step 2. Compute the projections of the matrices (K!kM) and M :

KM (k`1)"XM (k`1)T (K!kM)XM (k`1), (5)

MM (k`1)"XM (k`1)TMXM (k`1), (6)

where KM (k`1) and MM (k`1) are the (q]q) symmetric matrices.
Step 3. Solve the eigenproblem of the reduced order q :

KM (k`1)Q(k`1)"MM (k`1)Q(k`1)X(k`1), (7)

where Q(k`1) and X (k`1) are the (q]q) matrices.
Step 4. Find the improved eigenvectors X(k`1) :

X(k`1)"XM (k`1)Q(k`1) (8)

and the improved eigenvalues K(k`1) :

K(k`1)"X(k`1)#kI. (9)

K(k`1) converges to K and X(k`1) converges to X as k approaches in"nity. The
convergence rate of the subspace iteration method with shift is

(j
j
!k)/(j

q`1
!k). (10)

If a shift is an eigenvalue itself or very close to it, the iteration procedure
becomes unstable because of the singularity problem occurring during the ¸D¸T
factorization process of the coe$cient matrix. To avoid this singularity problem,
that is, to guarantee the numerical stability of the subspace iteration method
with shift, the following condition was adopted in the subspace iteration
method [7];

1)01jM
s~1

)k)0)99jM
s
, (11)

where jM
s~1

is the calculated approximation to the (s!1)th eigenvalue and jM
s
the

sth eigenvalue.
It means that a shift must be within a limited region resulting in slow

convergence. Moreover, if the calculated approximation to an eigenvalue slightly
di!ers from it, an eigenvalue may be inside the limited region. Then, the singularity
may occur although a shift is inside the limited region. These are the signi"cant
disadvantages of the subspace iteration method with shift. The purpose of this
paper is to remove the limitation in equation (11) for choosing the value of a
shift k.
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3.1. THEORY

Consider the simultaneous inverse iteration step in the subspace iteration
method with shift:

(K!kM)XM (k`1)"MX(k). (12)

If a shift k is very close to an eigenvalue, the singularity problem occurs during
the ¸D¸T factorization process of the coe$cient matrix (K!kM) in equation
(12). Then, the (k#1)th eigenvector approximations XM (k`1) cannot be acquired,
and so the iteration procedure cannot be performed any more. This is a signi"cant
disadvantage of the subspace iteration method with shift.

Jung et al. [15] proposed the numerically stable eigensolution method. However,
the method can only be applied to the structures with distinct eigenvalues. If
structures with multiple eigenvalues are analyzed by the method, the singularity
problem may still occur.

In this paper, to solve the above singularity problem that may occur in the case of
structures with multiple eigenvalues the following procedures are proposed. First,
let us consider a shift close to multiple eigenvalues. To simplify the notation in this
discussion, assume that the multiplicity of the lowest eigenvalues is s, that is,
j
1
"j

2
"2"j

s
. Then, the inverse iteration step on the multiple eigenvalues can

be expressed as follows:

(K!kM)XM (k`1)
s

"MX(k)
s

D(k`1)
s

, (13)

where the (n]s) matrices X(k)
s
"[x(k)

1
, x(k)

2
,2 , x(k)

s
], XM (k`1)

s
"[xN (k`1)

1
, xN (k`1)

2
,2 ,

xN (k`1)
s

], the (s]s) matrix D(k`1)
s

"diag (d(k`1)
11

, d(k`1)
22

,2 , d(k`1)
ss

), and the scalar
d(k`1)
ii

controls the length of the vector xN (k`1)
i

.
Because there are only (n]s) equations with ((n#1)]s) unknowns, (n]s)

components of XM (k`1)
s

and s components of d(k`1)
ii

, in equation (13), s side conditions
must be introduced for the solution of equation (13). These conditions are that the
current vector set (X(k)

s
) is orthogonal to the incremental vector set (DX(k)

s
) with

respect to M ; that is,

X(k)T
s

MDX(k)
s
"0. (14)

Adding the mass orthonormality relation, X(k)T
s

MX(k)
s
"I

s
, to the side

conditions, equation (14) yields

X(k)T
s

MXM (k`1)
s

"I
s
, (15)

where

XM (k`1)
s

"X(k)
s
#DX(k)

s
. (16)

The inverse iteration step on the other eigenvalues makes use of equation (12);
that is,

(K!kM)XM (k`1)
q~s

"MX(k)
q~s

, (17)
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where

X(k)
q~s

"[x(k)
s`1

, x(k)
s`2

,2 ,x(k)
q

]. (18)

Writing equations (13), (15) and (17) in matrix form gives

C
K!kM MX(k)

s
X(k)T

s
M 0 DC

XM (k`1)

DM (k`1)D"C
MX(k)

E D , (19)

where the unknown (s]q) matrix DM (k`1)"[DM (k`1)
s

, 0,2 , 0] and the (s]q) matrix
E"[I

s
, 0,2 , 0].

Note that XM (k`1) from equation (19) is used for XM (k`1) in equations (5) and (6)
instead of XM (k`1) in equation (4). Equation (19) is the main linear algebraic equation
used in the proposed method.

The coe$cient matrix of equation (19) is of the order (n#s), symmetric, and
non-singular. The non-singularity is one of the signi"cant advantages of the
proposed method and will be shown in the next section.

The proposed method can be applied to practical problems as follows. After
assuming that a shift is very close to a distinct eigenvalue, one performs the
factorizing process of the coe$cient matrix with one side condition. If the shift is
not very close to a distinct eigenvalue, but multiple ones (multiplicity"m), the
(n!m)th pivot element in the factorizing process of the coe$cient matrix usually
becomes small compared with its original value and the coe$cient matrix becomes
singular. To avoid the singularity, the (m!1) side conditions are added, and then
the factorizing process of the coe$cient matrix is continued. Since the storage
scheme of the proposed method is the skyline algorithm, the extra operation
number due to the (m!1) additional side conditions is small compared with the
total operation number of the factorizing process of the coe$cient matrix.

3.2. PROOF OF THE NON-SINGULARITY OF THE COEFFICIENT MATRIX [17}19]

The most remarkable characteristic of the proposed method is that the
non-singularity is always guaranteed. Let the coe$cient matrix of equation (19) be
denoted by C, that is,

C"C
K!kM MX(k)

s
X(k)T

s
M 0 D . (20)

If C is non-singular when the shift k becomes multiple eigenvalues, that is,
k:j

1
"2"j

s
, it will also be non-singular for a non-close shift. The resulting

C* will be

C*"C
K!j

s
M MX

s
XT

s
M 0 D . (21)
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The non-singularity of the proposed method is, therefore, proved by introducing
the new eigenproblem of the resulting matrix such as

C*>"M*>D, (22)

where D and> are the eigenvalue and the associate eigenvector matrices of the new
eigenproblem, respectively, and

M*"C
M 0

0 I
s
D , (23)

>"[y
1

y
2

2 y
n`s

] and D"diag (c
1
, c

2
,2 , c

n`s
). (24, 25)

The eigenpairs of the eigenproblem equation (22), y
j
and c

j
for j"1, 2,2 , n#s,

are as follows:

Eigenvector y
j
: G

x
i

e
i
H , G

x
i

!e
i
H , G

x
k

0 H , i"1, 2,2 , s : k"s#1, s#2,2 , n,

(26)

Eigenvalue c
j
: G

1,2 , 1 (s),
!1,2 ,!1 (s),
j
k
!j

s
(n!s),

k"s#1, s#2,2 , n, (27)

where j
i
and x

i
are the eigenvalues and eigenvectors of the system KX"MXK,

and e
i
is the (s]1) vector of which all elements are zero except for the ith element

with unity.
By considering the determinant of equation (22), the relationship can be obtained

as follows:

det[C*]"det[M*]det[D]

"(!1)sdet[M]
n
<

k/s`1

(j
k
!j

s
). (28)

The determinant of C* is not zero because of det [M]O0 by de"nition. The
non-singularity of the coe$cient matrix in equation (19) is shown. That is, the
numerical stability of the proposed method is proved analytically. The proposed
method, therefore, has an advantage over the subspace iteration method with shift
in that no limited regions are needed in the former.

3.3. CONVERGENCE ANALYSIS

To analyze the convergence characteristics of the proposed method, we can use
the concept of the convergence analysis of the subspace iteration method [20]. The
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convergence of the subspace iterations is conveniently studied by "rst changing the
basis from the "nite element co-ordinate basis to the basis of the eigenvectors. This
change of the basis is achieved using the following relation for the vectors X(k) in
equation (13):

X(k)"UZ(k), (29)

where U is the matrix storing all eigenvectors, U"[/
1
, /

2
,2 , /

n
]. Since U is

non-singular, there is a unique Z(k) for any X(k), and vice versa.
Introducing the relation of equation (29) to equations (13) and (17), and

premultiplying by UT, we obtain the following equations:

(K!kI
n
)ZM (k`1)

s
"Z(k)

s
D(k`1)

s
(30)

and

(K!kI
n
)ZM (k`1)

q~s
"Z(k)

q~s
, (31)

where the (n]s) matrix ZM (k`1)
s

"[zN (k`1)
1

, zN (k`1)
2

,2 , zN (k`1)
s

] and the (n](q!s))
matrix ZM (k`1)

q~s
"[zN (k`1)

s`1
, zN (k`1)

s`2
,2 , zN (k`1)

q
]. And then, the equations equivalent to

equations (5)} (8), but which express the relations in the new basis, are used to
evaluate Z(k`1). The convergence rate of the iteration is established from
equations (30) and (31), and using the fact that in the subspace iterations always the
optimum approximations to the required eigenvalues and eigenvectors are always
calculated.

For the convergence analysis let the iteration matrix Z(k) be denoted as follows:

Z(k)"

1 2 0 0 2 0

0 F F F

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

F F F 0

0 0 0 1

z(k)
q`1,1

2 z(k)
q`1,s

z(k)
q`1,s`1

2 z(k)
q`1,q

, (32)

z(k)
q`2,1

2 z(k)
q`2,s

z(k)
q`2,s`1

2 z(k)
q`2,q

F F F F

z(k)
n,1

2 z(k)
n, s

z(k)
n, s`1

2 z(k)
n,q
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where Z(k) is completely general, because the unit (q]q) matrix I can always be
obtained by linearly combining columns, provided Z(k) is not de"cient in the
vectors e

j
( j"1, 2,2 , q), which are vectors of the order n with only zero elements

except for the jth location which is unity. Using equations (30) and (31), we then
obtain

ZM (k`1)"

d(k`1)
11

j
1
!k

2 0 0 2 0

0 F F F

0 0 0 0

0
d(k`1)
ss

j
s
!k

0 0

0 0
1

j
s`1

!k
0

0 0 0 0

F F F 0

0 0 0
1

j
q
!k

z(k)
q`1,1

d(k`1)
11

j
q`1

!k
2 z(k)

q`1,s

d(k`1)
ss

j
q`1

!k
z(k)
q`1,s`1

1

j
q`1

!k
2 z(k)

q`1,q

1

j
q`1

!k

(33)

z(k)
q`2,1

d(k`1)
11

j
q`2

!k
2 z(k)

q`2, s

d(k`1)
ss

j
q`2

!k
z(k)
q`2,s`1

1

j
q`2

!k
2 z(k)

q`2,q

1

j
q`2

!k

F F F F

z(k)
n,1

d(k`1)
11

j
n
!k

2 z(k)
n, s

d(k`1)
ss

j
n
!k

z(k)
n,s`1

1

j
n
!k

2 z(k)
n,q

1

j
n
!k

The subspace E(k`1) spanned by ZM (k`1) is not changed if we multiply the "rst
s columns in ZM (k`1) by (j

i
!k)/d(k`1)

ii
and the other columns by (j

j
!k), i.e., E (k`1)

is also spanned by ZI (k`1), where
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ZI (k`1)"

1 2 0 0 2 0

0 F F F

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

F F F 0

0 0 0 1

z(k)
q`1,1

j
1
!k

j
q`1

!k
2 z(k)

q`1,s

j
s
!k

j
q`1

!k
z(k)
q`1,s`1

j
s`1

!k
j
q`1

!k
2 z(k)

q`1,q

j
q
!k

j
q`1

!k

.

z(k)
q`2,1

j
1
!k

j
q`2

!k
2 z(k)

q`2, s

j
s
!k

j
q`2

!k
z(k)
q`2,s`1

j
s`1

!k
j
q`2

!k
2 z(k)

q`2,q

j
q
!k

j
q`2

!k

F F F F

z(k)
n,1

j
1
!k

j
n
!k

2 z(k)
n,s

j
s
!k

j
n
!k

z(k)
n,s`1

j
s`1

!k
j
n
!k

2 z(k)
n,q

j
q
!k

j
n
!k

(34)

In the subspace iteration using equations (30) and (31), the best eigenvector
approximations are extracted from the vectors stored in ZM (k`1). But on inspecting
the columns of ZI (k`1) in equation (34) we "nd that ultimately the jth column is the
best approximation to the vector e

j
in the subspace E(k`1). The ultimate rate of

convergence to the jth eigenvector is thus obtained by evaluating

EzJ (k`1)
j

!e
j
E
2

Ez (k)
j
!e

j
E
2

"

j
j
!k

j
q`1

!k S
+n

i/q`1
(z (k)

i,j
)2((j

q`1
!k)/(j

i
!k))2

+n
i/q`1

(z (k)
i,j

)2

, (35)

where z (k)
j

is the jth column of Z (k), and is similar for zJ (k`1)
j

. Hence,

EzJ (k`1)
j

!e
j
E
2

Ez (k)
j
!e

j
E
2

)

j
j
!k

j
q`1

!k
(36)

and convergence is linear with the rate of convergence equal to (j
j
!k)/(j

q`1
!k).

We, therefore, conclude that provided the starting subspace is not orthogonal to
the required least dominant subspace spanned by /

1
, /

2
,2 , /

q
, the jth column in

X (k`1) converges linearly with the rate (j
j
!k)/(j

q`1
!k) to /

j
. Since the

eigenvalues are calculated using the Rayleigh quotient, the jth eigenvalue in
equation (7) converges linearly with the rate M (j

j
!k)/(j

q`1
!k)N2 to j

j
.



TABLE 1
Operation counts for the subspace iteration method with shift

Operation Calculation Number of operations

Multiplication K!kM n (m
M
#1)

Factorization ¸D¸T"K!kM nm
M

(m
M
#3)/2

Iteration
Multiplication MX (k) qn(2m

M
#1)

Solve for XM (k`1) (K!kM)XM (k`1)"MX (k) qn (2m
K
#1)

Multiplication KM (k`1)"XM (k`1)TMX(k) qn(q#1)/2
Multiplication MXM (k`1) qn(2m

M
#1)

Multiplication MM (k`1)"XM (k`1)TMXM (k`1) qn(q#1)/2
Solve for Z (k`1) & X (k`1) KM (k`1)Z (k`1)

"MM (k`1)Z (k`1)X (k`1) O(q3) neglected
Multiplication X (k`1)"XM (k`1)Z (k`1) nq2

Sturm sequence check
Multiplication K!j

p
M n (m

M
#1)

Factorization ¸D¸T"K!j
p
M nm

M
(m

M
#3)/2

Total ¹
s
qn (2m

K
#4m

M
#2q#4)#n (m2

K
#3m

K
#2m

M
#2)
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3.4. OPERATION COUNTS AND SUMMARY OF ALGORITHM

Let one operation be equal to one multiplication that is nearly always followed
by an addition. Assume that the half-bandwidths of K and M are m

K
and m

M
respectively. The steps for the subspace iteration method with shift with the
operations are summarized in Table 1, and for the proposed method in Table 2.

The number of operations of the subspace iteration method with shift is
¹
s
qn(2m

K
#4m

M
#2q#4)#n(m2

K
#3m

K
#2m

M
#2), and that for the proposed

method ¹
p
Mqn(2m

K
#4m

M
#2q#4#s)#sn(m

K
#(s#1)/2)N#n(m2

K
#3m

K
#

2m
M
#2). s is the multiplicity of the multiple eigenvalues which is on or very close

to a shift. The proposed method needs more operations per iteration step,
qn#n(m

K
#1), than the subspace iteration method with shift. Assume that the

ratio is composed of the operation counts per iteration of the proposed method
(N

p
), that of the subspace iteration method with shift (N

s
), and that the di!erence of

the operation counts per iteration for the above two methods (N
p
!N

s
) is as

follows:

ratio"
N

p
!N

s
N

p

"

qn(1#s)#snMm
K
#(s#1)/2N

qnM(2m
K
#4m

M
#2q#4#s)#sn(m

K
#(s#1)/2)N

. (37)

Then, if the half-bandwidth of the sti!ness matrix (m
K
) is equal to that of the mass

matrix (m
M

), the above ratio can be approximated as follows:

ratio+
s
6q

. (38)



TABLE 2
Operation counts for the proposed method

Operation Calculation Number of operations

Iteration
k"0

Multiplication K!kM n (m
M
#1)

Multiplication MX (0) qn(2m
M
#1)

Change the last s columns of K!kM to MX (0)
s

Neglected
Factorization ¸D¸T"F (1) Mnm

K
(m

K
#3#2s)#(s#1)N/2

k"1, 2,2
Multiplication MX (k) qn(2m

M
#1)

Change the last s columns of K!kM to MX (k)
s

Neglected
Factorization ¸D¸T"F (k`1) snMm

K
#(s#1)/2N

Solve for XK (k`1) F (k`1)XK (k`1)"R qn(2m
K
#s#1)

Multiplication KM (k`1)"XM (k`1)TMX (k) qn(q#1)/2
Multiplication MXM (k`1) qn(2m

M
#1)

Multiplication MM (k`1)"XM (k`1)TMXM (k`1) qn(q#1)/2
Solve for Z (k`1) & X (k`1) KM (k`1)Z (k`1)

"MM (k`1)Z (k`1)X (k`1) O(q3) neglected
Multiplication X (k`1)"XM (k`1)Z (k`1) nq2

Sturm sequence check
Multiplication K!j

p
M n (m

M
#1)

Factorization ¸D¸T"K!j
p
M nm

K
(m

K
#3)/2

Total ¹
p
Mqn(2m

K
#4m

M
#2q#4#s)#sn(m

K
#(s#1)/2)N

#n (m2
K
#3m

K
#2m

M
#2)

where

F (k`1)"C
K!kM MX(k)

s

X(k)T
s

M 0 D , XK (k`1)"C
XM (k`1)

DM (k`1)
s

D , R"C
MX (k)

E
s
D (see equation (19))
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This ratio means that the larger the number of the required eigenpairs, the
smaller is the di!erence of the operation counts between the proposed method and
the subspace iteration method with shift. That is, the number of operations for the
aforementioned two methods, the subspace iteration method with shift and the
proposed method, is almost the same when the required number of eigenpairs is
large.

4. NUMERICAL EXAMPLES

The three-dimensional framed structure and the simply supported square plate
are analyzed to verify the e!ectiveness of the proposed method. The solution time
spent for the "rst 10 eigenpairs and the convergence of the proposed method are
compared with those of the subspace iteration method with shift which is not used
in the limited region (see equation (11)). Each method stops when the error norms
are reduced by a factor of 10~6, which yields a stable eigensolution and su$cient



Figure 1. Three-dimensional framed structure. A"0)2787 m2, I"8)631]10~3 m4, E"2)068]
1010Pa, o"5)154]102 kg/m3.

TABLE 3
¹he lowest 10 eigenvalues of the three-dimensional framed structure

Mode number Eigenvalues

1 0)1556E#03
2 0)1556E#03
3 0)3112E#03
4 0)1623E#04
5 0)1623E#04
6 0)2840E#04
7 0)5736E#04
8 0)5736E#04
9 0)8942E#04

10 0)1202E#05
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accuracy in the calculated eigenpairs for practical analysis [77]. The error norm [7]
is de"ned as

e (k)
i
"

E(K!j (k)
i

M)x (k)
i

E
2

EKx (k)
i

E
2

. (39)

All runs are executed in the IRIS4D-20-S17 with 10 Mips and 0)9 M#ops.



TABLE 4
Solution time for the lowest 10 eigenpairs of the three-dimensional framed structure

Analysis methods Shift"1)01j
4

Shift"1)00001j
4

Shift"j
4

Subspace iteration method with shift 409)86 (1)00) No solution No solution
Proposed method 426)58 (1)04) 421)69 421)19

Figure 2. Error norm versus iteration number of the 4th eigenpair in case of shift"1)01 j
4
.

Subspace iteration method; Proposed method.

Figure 3. Error norm versus iteration number of the 10th eigenpair in case of shift"1)01 j
4
.

Subspace iteration method; Proposed method.
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Figure 4. Error norm versus iteration number of the 4th eigenpair in case of shift"1)00001j
4
.

Proposed method.

Figure 5. Error norm versus iteration number of the 10th eigenpair in case of shift"1)00001j
4
.

Proposed method.
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4.1. THREE-DIMENSIONAL FRAMED STRUCTURE

The "rst example is a three-dimensional framed structure. The geometric
con"guration and the material properties are shown in Figure 1. The structure is
discretized by using 315 beam elements resulting in a system of dynamic equations
with a total of 810 degrees of freedom. The consistent mass matrix is used for M.



Figure 6. Error norm versus iteration number of the 4th eigenpair in case of shift"j
4
.

Proposed method.

Figure 7. Error norm versus iteration number of the 10th eigenpair in case of shift"j
4
.

Proposed method.
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The lowest 10 eigenvalues of the model are shown in Table 3. The eigenvalues of
the model are distinct root or multiple ones.

Some results are shown in Table 4 and in Figures 2}7. The solution time for the
two methods are summarized in Table 4. When a shift is on 1)01 j

4
, the subspace

iteration method with shift and the proposed method obtain the required 10



Figure 8. Simply supported square plate. E"2)0]1011 Pa, o"7)85]103 kg/m3, Poisson ratio"
0)3, Shell thickness"0)01 m.

TABLE 5
¹he lowest 10 eigenvalues of the simply supported square plate

Mode number Eigenvalues

1 0)4435E#01
2 0)2914E#02
3 0)2914E#02
4 0)7367E#02
5 0)1305E#03
6 0)1305E#03
7 0)2087E#03
8 0)2087E#03
9 0)4010E#03

10 0)4418E#03

TABLE 6
Solution time for the lowest 10 eigenpairs of the simply supported square plate

Analysis methods Shift"1)01j
2

Shift"1)00001j
2

Shift"j
2

Subspace iteration method with shift 723)34 (1)00) No solution No solution
Proposed method 749)38 (1)03) 747)09 750)35
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Figure 9. Error norm versus iteration number of the 2nd eigenpair in case of shift"1)01 j
2
.

Subspace iteration method; Proposed method.

Figure 10. Error norm versus iteration number of the 10th eigenpair in case of shift"1)01 j
2
.

Subspace iteration method; Proposed method.
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eigenpairs. However, when the shift is on 1)00001 j
4
or on j

4
, the subspace iteration

method with shift does not calculate the solutions while the proposed method "nds
the solutions. It shows that the iteration procedure for the proposed method can
converge without any singularity even if the shift is exactly the same as the multiple
eigenvalues, as analytically proved in the Section 3.2.



Figure 11. Error norm versus iteration number of the 2nd eigenpair in case of shift"1)00001j
2
.

Proposed method.

Figure 12. Error norm versus iteration number of the 10th eigenpair in case of shift"1)00001j
2
.

Proposed method.
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For each solution method, the convergence of each eigenpair is depicted in
Figures 2}7. Figures 2 and 3 show that when the shift is on 1)01 j

4
the convergence

of the proposed method is nearly equal to that of the subspace iteration method
with shift. Figures 4 and 5 show that when the shift is on 1)00001 j

4
, the proposed

method converges well without any singularity while the subspace iteration method



Figure 13. Error norm versus iteration number of the 2nd eigenpair in case of shift"j
2
.

Proposed method.

Figure 14. Error norm versus iteration number of the 10th eigenpair in case of shift"j
2
.

Proposed method.
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with shift cannot converge due to the singularity. Figures 6 and 7 show that when
the shift is exactly the same as the fourth eigenvalue, the proposed method only
converges well without any singularity. These results are the same as a shift is on
1)00001j

4
. From the above results, it can be seen that the proposed method can

choose a more exact shift than the subspace iteration method with shift, and thus
the proposed method can be more computationally e$cient.
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4.2. SIMPLY SUPPORTED SQUARE PLATE

The second example is the simply supported square plate. Figure 8 shows the
geometric con"guration and material properties. The structure is discretized by
using 36 shell elements (nine node/element) resulting in a system of dynamic
equations with a total of 701 degrees of freedom. The consistent mass matrix is used
for M.

The lowest 10 eigenvalues of the model are shown in Table 5. The eigenvalues of
the model are distinct root or multiple ones.

Some results are shown in Table 6 and in Figures 9}14. The solution time for the
two methods are summarized in Table 6. When a shift is on 1)01 j

2
, the subspace

iteration method with shift and the proposed method obtain the required 10
eigenpairs. However, when the shift is on 1)0001 j

2
or on j

2
, the subspace iteration

method with shift does not calculate the solutions while the proposed method "nds
the solutions. It shows that the iteration procedure for the proposed method can
converge without any singularity even if the shift is exactly the same as the multiple
eigenvalues.

For each solution method, the convergence of each eigenpair is depicted in
Figures 9}14. Figures 9 and 10 show that when the shift is on 1)01 j

2
the

convergence of the proposed method is nearly equal to that of the subspace
iteration method with shift. Figures 11 and 12 show that when the shift is on
1)00001j

2
the proposed method converges well without any singularity while the

subspace iteration method with shift cannot converge due to the singularity.
Figures 13 and 14 show that when the shift is exactly the same as the second
eigenvalue, the proposed method only converges well without any singularity.

5. CONCLUSIONS

A numerically stable technique using side conditions for improving the subspace
iteration method with shift has been presented. The characteristics of the proposed
method identi"ed by the analytical and the numerical results from numerical
examples are summarized as follows:

(1) The non-singularity of the proposed method is always guaranteed, which is
proved analytically; even if the shift is on or very close to multiple eigenvalues,
the proposed method can obtain the solutions without any singularity.

(2) The convergence rate of the proposed method is at least equal to that of the
subspace iteration method with shift, and the operation counts of the proposed
method and the subspace iteration method with shift are almost the same when
the required number of eigenpairs is large.
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